

Medium and High Biogas Projects

Biogas Processing Options

February 2019 Presented by Daniel Waineo, P.E.

Medium and High Biogas Projects

Biogas Processing Options

February 2019 Presented by Daniel Waineo, P.E.

Medium BTU Processes

- Typical end users:
- 1. Boilers for Heat
- 2. Direct Heating Applications

Medium BTU Gas Processing

- Typical Processing Requirements:
- 1. Dehydration to 32 deg F using cold water dehydration
- 2. H2S removal to a level allowed by the permitting authority for combustion
- 3. Compression to lower levels (3 to 100 PSIG)
- Gas is suitable for injection into a low pressure pipeline (typically HDPE)

Medium BTU Gas Makeup

Methane	
Carbon Dioxide	
Oxygen	
Nitrogen	
H2S	
Water	
Pressure	

Before	After
40-70%	40-70%
30%-50%	30-50%
0-4%	0-4%
0-20%	0-20%
0-1%	0-50 ppmv
Saturated	35 deg dew poin
-50"-10"	3-100 PSIG

Medium BTU H2S

- Typically Dry media H2S removal
 - Carbon
 - Sulfatreat
 - Sulfatrap

Medium BTU Dehydration

Medium BTU Users

Boilers for building heat or process heat

Medium BTU Direct Fire Applications

Nozzle Size Notes For Medium BTU projects

- Nozzles will need to be changed in NG Burner equipment
 - Prevents Flameouts due to high gas velocities
 - Allows sufficient BTUs to burner

Typical HiBTU Processing to meet Pipeline Tarriff

- 1. Blower
- 2. H2S Treatment
- 3. Compressor
- 4. Dehydration
- 5. NMOC removal
- 6. CO2 Removal
- 7. O2 Removal (if necessary)
- 8. Dehydration (if necessary)
- 8. N2 Removal (if necessary)
- 9. Compression to Pipeline Pressure

HIBTU NMOC/VOC

- Usually some pretreatment to remove Nonmethane Organic Compounds (NMOCs) and Volatile Organics (VOCs)
 - The Pretreatment protects membranes and/or PSAs installed down stream.
 - Pretreatment systems usually consist of:
 - Carbon Beds
 - Temperature Swing Adsorption Systems
 - Pressure Swing Adsorption Systems
 - Treatment selection depends on concentrations

Temperature Swing Adsorption

One bed treats while the second bed regenerates

Temperature Swing Adsorption

CO2 Removal Options

- 1. Membranes
- 2. PSA
- 3. Waterwash
- 4. Selexol/Methanol
- 5. Amine

CO2 with Membranes

Membrane operation

Carbon Dioxide at 0 PSIG

Membranes Evaluation

- Advantages
 - Most common treatment method
 - Very Simple
 - Cost effective especially for small sites
 - Also removes water and some O2 and N2.
- Disadvantages
 - Gas Recycle requires addition compressor horsepower
 - Pretreatment generally required before membranes

PSA for CO2 Removal

- CO2 is adsorbed onto media at high pressure and is released at low pressure
- Six bed system:

PSA (CO2) Evaluation

- Advantages:
 - Relatively Low Cost
- Disadvantages:
 - Higher Complexity
 - Gas Recycle required for higher efficiencies
 - Valves potential wear out due to cycling on and off every minute
 - Vacuum pumps are typically required (Maintenance and HP)

CO2 Absorption

- Processes
 - Water wash
 - Selexol
 - Methanol
- How it works
 - CO2 is adsorbed at high pressure into the liquid
 - CO2 flashes out of the liquid at low pressure
 - Additional CO2 is removed by stripping

CO2 Water Wash

- Advantages:
 - No chemical usage
 - Continuous process
- Disadvantages:
 - High electricity usage for water flows and chillers
 - Biological contamination
 - Potential Freezing of the water
 - Venting of contaminants in the air stripper
 - Gas will require dehydration post CO2 processing

Water Wash

Biogas

AMERICAN BIOGAS

COUNCIL

Selexol

CO2 Selexol

- Advantages
 - Lower liquid recycle rates than water wash
 - Lower recycle rates than most processes
- Disadvantages
 - Chemical Use (initial fill and makeup)
 - Fairly high pressure (400 psig)

CO2 Amine

- Process: CO2 is absorbed into the amine. Amine is regenerated by heating in a reboiler
- Advantages:
 - Can remove CO2 to very low levels
 - No gas recycle
- Disadvantages:
 - Reboiler heat use is high
 - Amine does not work well with Oxygen

Amine

Reboiler Picture

O2 Catalyst

- Catalysts "burn" Oxygen in the gas using methane or other BTU containing molecules
 - Process is typically kicked off with an electric heater
 - Heat is maintained using heat exchangers
 - Process is typically at 550 deg F

O2 Catalyst

O2 Catalyst

- Advantages
 - Simple process
 - Uses little energy after the process kicks off
- Disadvantages
 - High O2 can cause the process to overheat
 - Condensate generated can be corrosive

Dehydration

- Not typically needed after Membranes, Selexol or PSAs
 - Cold water dehydration
 - Glycol
 - Molecular Sieve

Cold water Dehydration

Cold Water Dehydration

- Simple process uses chillers to chill water. Cold water dehydrates biogas using heat exchangers.
- 32 deg F dewpoint does not meet pipeline tariff requirements.

Glycol Dehydration

Glycol adsorbs water and is regenerated using a boiler

Glycol Dehydration

- Advantages
 - Removes water to pipeline specification
- Disadvanges
 - Uses a small amount of gas for the reboiler

Mol Sieve Dehydration

Mol Sieve Dehydration

- Uses a temperature swing adsorption process to remove water in the biogas
- Advantages
 - Meets pipeline specifications
- Disadvantages
 - Heat required for regeneration

Nitrogen Removal

- PSA
- Mol Sieve
- Cryogenic Separation

N2 and O2 VPSA

- Media is used to adsorb Methane. Pressure swing releases the methane. The methane is removed by vacuum pumps and recompressed to pipeline pressures.
- Advantages
 - Higher methane recovery than Mol Sieve NRU
- Disadvantages
 - Electricity use is high with gas recycle, vacuum pumps and gas requiring compression from -10 psig to pipeline pressures
 - Valves wear out from cycling every minute
 - Batch process

N2 Mol Sieve

- Pressure swing process that traps Nitrogen and Oxygen
- Advantages:
 - Lower Electrical use because Methane does not require recompression
- Disadvantages:
 - Methane recovery is not very high
 - Valves wear out from fast cycles
 - Batch process

N2 Cryogenic Separation

- Process liquefies Methane and Nitrogen at very low temperatures. Nitrogen is distilled out of solution.
- Advantages:
 - Very high Methane recovery
 - Simple process with few moving parts
 - Fairly low energy requirements
- Disadvantages
 - Process takes a while to start when it is warm
 - All CO2 and water must be removed from the gas before the Cryogenic process

N2 Cryogenic Separation

