

Welcome to: ABC Operator Training

Overview

- What is the ERIC Lab?
- What information can a lab provide you with?
- What does lab information look like and tell you?
- What does BMP and pilot-scale information look like and tell you?
- How can you incorporate the lab data into your projects?
- Results from a case study
- Summary
- Lab tour and Q&A with lab staff

UNIVERSITY OF **WISCONSIN OSHKOSH**

Contract Testing and Research **Services**

Environmental Research and Innovation Center (ERIC)

UNIVERSITY OF WISCONSIN Email Polk Library Directory D2L My UW System Safety Leadership Council 🔎 Environmental Research and Innovation Center (ERIC) OSHKOSH

Education & Outreach 🛩

Environmental Research and Innovation Center (ERIC)

Environmental Health Testing ~

The Environmental Research and Innovation Center (ERIC) at the University of Wisconsin Oshkosh serves as a research and testing center for environmental health professionals, industries looking to evaluate materials for biogas potential, and conducting a variety of customized research projects.

About ~

Home

Seal of Testing Assurance

US Composting (STA) cartified laboration by the United Star (STA) certified laboratory by the United States Composting Council.

Biogas Testing ~

Compost Testing ~

Email: eric@uwosh.edu

Physical Address

Mailing Address:

What are you looking to

do?

Test Your Compost

Test Your Water

Biogas / Biosolid Testing

UNIVERSITY OF WISCONSIN

Environmental Research and Innovation Center (ERIC)

- USEPA, WIDNR, WI DATCP, US Composting Council-certified facility
- Contract R&D for clients from the Canadian Yukon to Central America that provide real-world answers and solutions to their company's questions
- Provides state-of-the-art lab facilities for research and consulting for those interested in biogas applications
- Employ over 50 students each year
- Transfer of experience, technology, and expertise from public sector to add value to industry partners and their products and services
- Facilities and expertise not available anywhere else in WI or the nation
- Unique third party that possesses the operational and research expertise to bring projects from cradle to grave

UNIVERSITY OF WISCONSIN OSHKOSH

Water Analysis

Satellite Labs in Eagle River, Sturgeon Bay, and Manitowoc

- Analyze over 10,000 drinking water samples per year
- Analyze over 12,000 surface water samples per year
- All types of microbiology analysis (i.e., pathogens, genetics, etc.)
- Bacteria, nitrate, nitrite, arsenic, etc.
- Private clients, 17 counties, grants/contracts and many corporate partners

Membrane Filtration

111111 111

Defined Substrate

Environmental Research and

Innovation Center (ERIC)

qPCR

WISCONSIN OSHKOSH

UNIVERSITY OF

Environmental Research and Innovation Center (ERIC)

Digester Sample Analysis

- Standardized BMP analysis based on international standards
- Onsite and in-lab gas testing
- Standardized feedstock, AD, and digestate testing
- Use of multiple techniques to keep costs low, increase throughput, and provide the exact data clients need
- Volatile Fatty Acids (VFA) via GC-FID
- Customized analysis air, degradation, etc.

OSHKOSH Innovation Center (ERIC)

Compost Analysis

- STA testing (US Composting Council)
- S-100, STA, Class A, 503 Metals, Premium, or Basic Packages
- Compostability studies
- Growth and vigor & customized growth studies
- Nutrient analysis for all agricultural products, soils, etc.

BASIC	PREMIUM	STA	503 METALS	S-100	CLASS A
Moisture/Total	BASIC	BASIC	Copper, Zinc,	Moisture/Total	inerts.
Solids, Organic	PACKAGE	PACKAGE	Arsenic,	Solids, Organic	Copper, Zinc,
Matter/Ash.		0000000000	Cadmium.	Matter/Ash.	CN Ratio.
	plus: inerts,	plus: Inerts,			
pH, Electrical	Sieve	Sieve	Chromium,	pH, Electrical	Arsenic,
Conductivity,	Analysis,	Analysis,	Lead,	Conductivity,	Cadmium,
Total Nitrogen,	Calcium,	Calcium,	Mercury,	Inerts, Sieve	Chromium,
Ammonia,	Magnesium,	Magnesium,	Molybdenum,	Analysis,	Lead,
Phosphorus	Sodium, Iron,	Copper, Zinc,	Nickel,	Copper, Zinc,	Mercury,
(P2O5),	Sulfur, Boron,	Arsenic,	Selenium	C:N Ratio,	Molybdenum
Potassium	Chloride,	Cadmium,		Arsenic,	Nickel,
(K2O)	TOC, C:N	Chromium,		Cadmium,	Selenium,
	Ratio,	Lead,		Chromium,	Bioassay,
	Bioassay,	Mercury,		Lead, Mercury,	Respirometry
	Respirometry,	Molybdenum,		Molybdenum,	Fecal
	Fecal	Nickel,		Nickel,	Coliform
	Coliform,	Selenium,		Selenium,	
	Agricultural	Bloassay,		Respirometry,	
	Index	Respirometry,		Fecal Coliform	
		Fecal			
		Coliform			

New US Digestate Standard

www.Digestate.org

FromToTo ValueFoodDigestateAdded Products

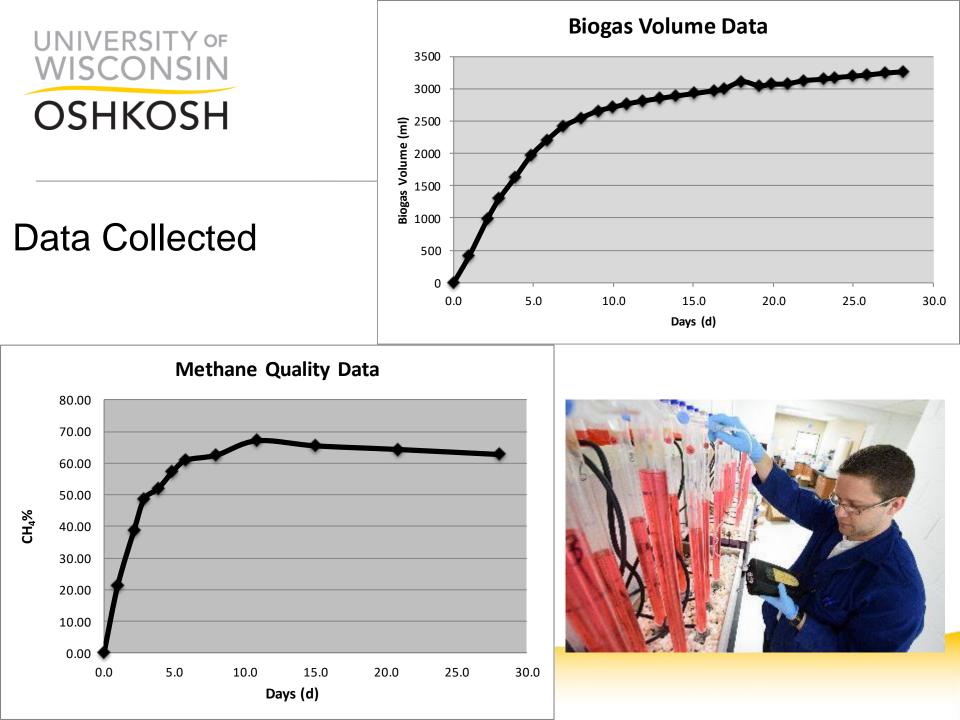
Lab Information

- Does a feedstock cause microbial inhibition?
- How productive and of what quality is a feedstock?
- What nutrient value does a feedstock have?
- How well is a digester performing?
- What is an optimal co-feeding recipe for a digester?
- Does my digestate have value?
- Customized analysis to answer specific client questions

OSHKOSH Phased Approach for Project Success

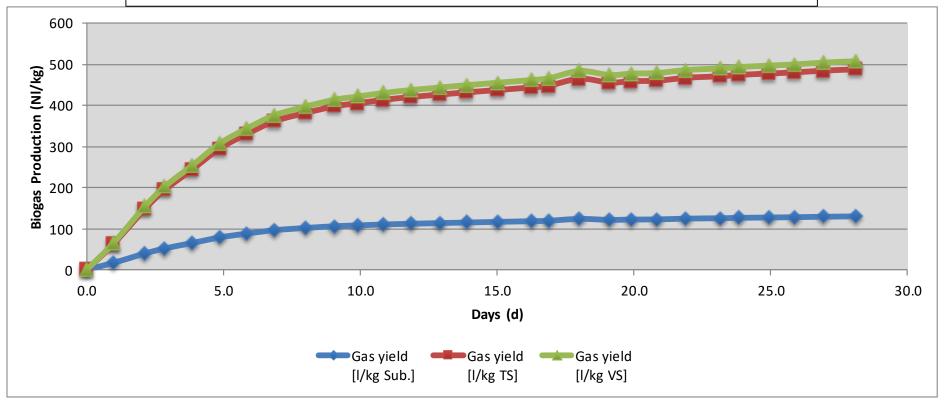
- Phase 1 Physical, Chemical and Biological testing on each feedstock
- Phase 2 Biomethane Potential (BMP) testing of each feedstock
- Phase 3 Pilot unit testing (Wet and/or Dry)
- Phase 4 Full scale trial

OSHKOSH Example of Potential Phase 1 Testing

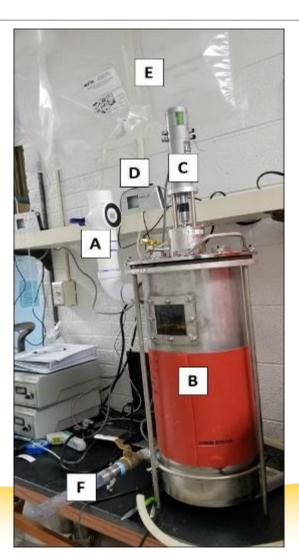

- pH
- TS
- VS
- EC
- Alkalinity
- COD
- BOD
- Total N-P-K

- TOC
- NH3
- VFAs
- Secondary nutrients
- Metals
- Waste characterization
- Microbial Inhibition

OSHKOSH Phase 2: BMP Testing


- What method is being used?
 - Loading rate
 - Inoculum
 - Time, Temp, etc...
- How does the data compare to literature values?
- Understanding the data
 - Operator vs design engineer vs project developer

OSHKOSH BMP Results

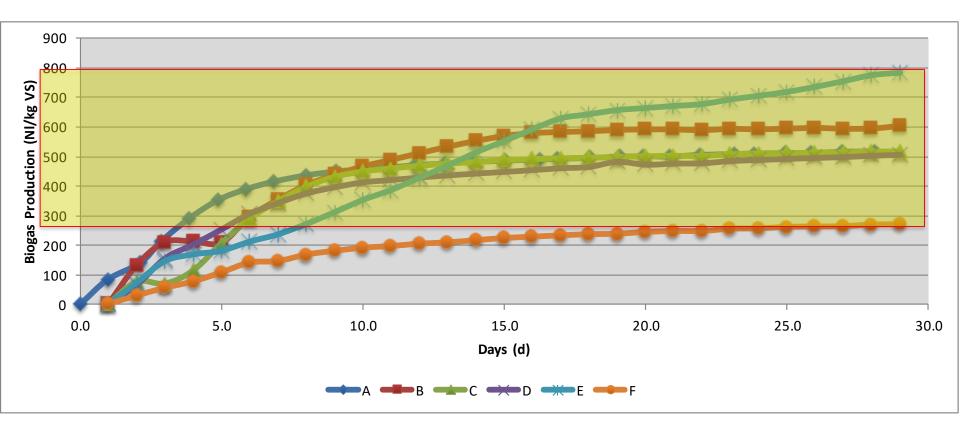

BMP Value = 508 NI biogas / kg VS or 320 NI CH_4 / kg VS TS = 26.8% VS = 95.9%

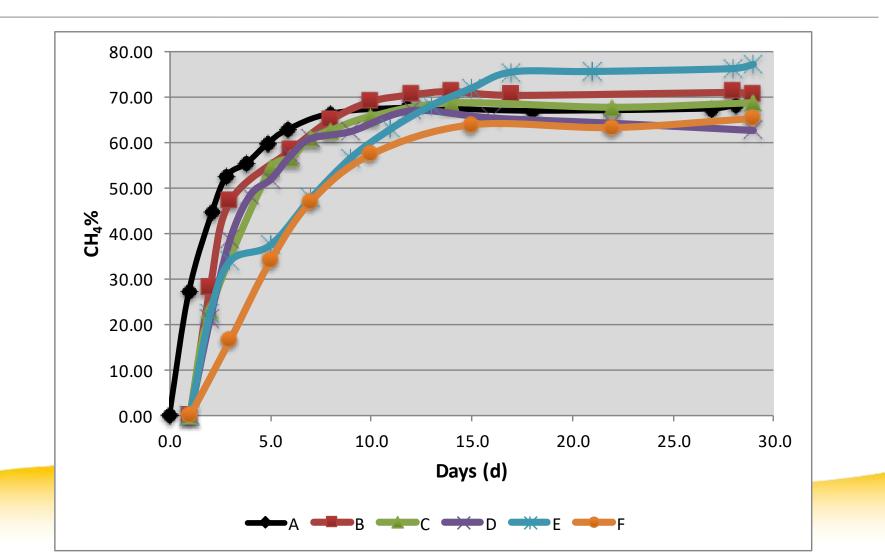
OSHKOSH Phase 3: Pilot Testing (Dry & Wet AD)

OSHKOSH Mimic Full Scale Operating Parameters

- Develop "recipes" based on the results from phase 1 & 2 results
- HRT?
- OLR?
- Mesophilic or Thermophilic?
- Recycle rate?

UNIVERSITY of
WISCONSINDo you have the ability to do full scaleOSHKOSHtesting or trials?

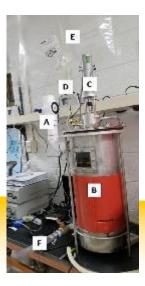

OSHKOSH How are the lab results being used?


Parameter	Unit	Sample A	Sample B	Result C	Result D	Result E	Result F
Alkalinity as CaCO3 on		ND	ND	1,969	667	1,600	9,000
solids	mg/kg WWB						
Chemical Oxygen Demand		234,825	145,075	54,075	57,825	291,150	52,230
(COD)	mg/kg WWB						
	<u> </u>	32:1	23:1	47:1	17:1	39:1	30:1
Carbon : Nitrogen Ratio	unitless						
Determination of pH	unitless	4.1	4.4	4.7	5.4	5.1	7.6
	01111635	85.7	260.5	18.6	35.0	137.8	203.2
Nitrogen, Ammonia (NH3)	4	0017	200.0	2010	0010	20710	200.2
as N on solids	mg/kg WWB	11.61	48.61	8.3	3.2	14.3	9.61
		11.01	40.01	0.5	5.2	14.5	9.01
Nitrogen, Nitrate + Nitrite	<i>(</i>)						
(NO3 + NO2) on solids	mg/kg WWB	4 4 2 2	0.064		70.44	2.000	7.000
		4,432	9,261	2,866	7841	2,000	7,060
Nitrogen, Total Kjeldahl as N							
on solids	mg/kg WWB						
		465	851	400	255	2,028	662
Phosphorus, Total on solids	mg/kg WWB						
		6,895	7,266	10,969	621	19,672	11,573
Potassium (K) on solids	mg/kg DWB						
Solids, Total	%	27.3	35.5	24.4	25.0	16.1	41.8
Solids, Total Volatile	% TS	95.2	94.3	93.7	96.4	91.5	85.7
Total Organic Carbon (TOC)		142,428	216,967	136,365	128,449	77,633	213,940
on solids	mg/kg WWB						
Volatile Fatty Acids	mg/kg	3,169	5,062	1,020	517	560	115

OSHKOSH Methane Curves

UNIVERSITY OF WISCONSIN

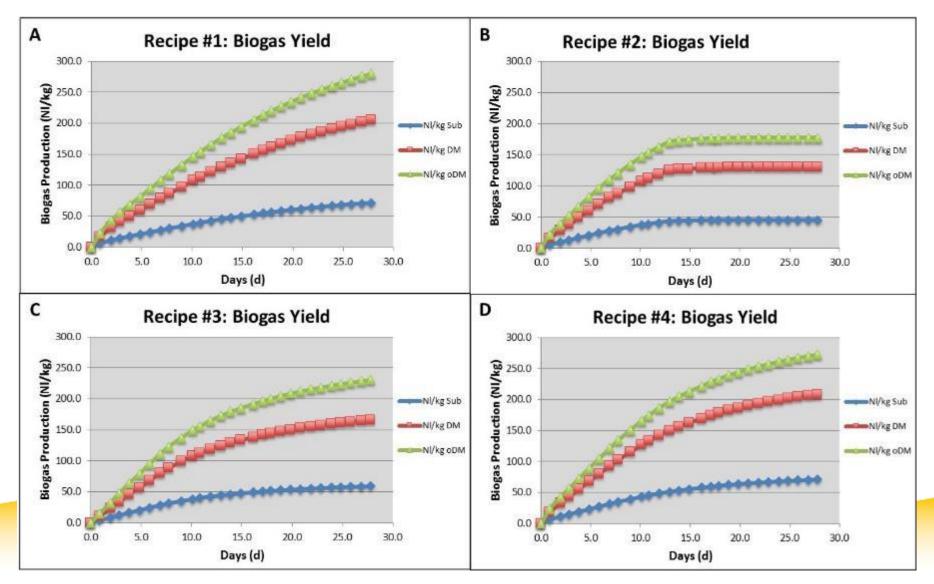
OSHKOSH Full Scale Production Potential


							Theoretical Calculation			
					BMP Value		Total Biogas			
Example					(NL biogas/kg	Mean CH ₄	Yield per Year	KWH per	MMBTU	MMBTU
Feedstocks	Tons / Year	% WT	TS (%)	VS (%)	VS)	(%)	(ft ³)	Year	per Year	per Day
F	96,000	65.66	41.8	85.7	270	49.7	297,470,212	16,955,802	146,364	401
A	15,000	10.26	27.3	95.2	519	58.1	64,820,085	3,694,745	37,284	102
В	15,000	10.26	35.5	94.3	603	62.3	97,006,313	5,529,360	59,831	164
C	11,500	7.87	24.2	93.7	519	58.7	43,358,229	2,471,419	25,197	69
D	8,300	5.68	26.8	95.9	508	54.7	34,717,352	1,978,889	18,800	52
Е	400	0.27	16.1	91.5	783	58.8	1,478,155	84,255	860	2
		0.00					0	0	0	0
Total	146,200	100.0	37.4	88.8	364.2	57.1	538,850,346	30,714,470	288,336	790
	If we assume we will achieve 80% of Theoretical						oretical			
_						ľ	431,080,277	24,571,576	230,669	632

Revenue Potential

- \$0.09/kWh = \$2.8M
- 0.04/kWh = 1.2M
- \$8/MMBTU = \$2.9M
- \$56/MMBTU = \$16M

UNIVERSITY of
WISCONSINRecipe Development for Pilot UnitOSHKOSHTesting


Recipe #1		Recipe #2		Recipe #3		Recipe #4					
% WT	TS (%)	VS (%)	% WT	TS (%)	VS (%)	% WT	TS (%)	VS (%)	% WT	TS (%)	VS (%)
18.6	41.8	85.7	19.6	41.8	85.7	32.8	41.8	85.7	19.7	41.8	85.7
0.0	27.3	95.2	11.8	27.3	95.2	5.1	27.3	95.2	11.0	27.3	95.2
19.9	35.5	94.3	11.8	35.5	94.3	5.1	35.5	94.3	11.0	35.5	94.3
0.0	24.2	93.7	0.0	24.2	93.7	3.9	24.2	93.7	8.4	24.2	93.7
11.0	26.8	95.9	6.5	26.8	95.9	2.8	26.8	95.9	0.0	26.8	95.9
0.5	16.1	91.5	0.3	16.1	91.5	0.1	16.1	91.5	0.0	16.1	91.5
50.0	34.3	55.1	50.0	34.3	55.1	50.0	34.3	55.1	50.0	34.3	55.1
100	31	76	100	31	76	100	32	74	100	31	76
	18.6 0.0 19.9 0.0 11.0 0.5 50.0	% WT TS (%) 18.6 41.8 0.0 27.3 19.9 35.5 0.0 24.2 11.0 26.8 0.5 16.1 50.0 34.3	% WTTS (%)VS (%)18.641.885.70.027.395.219.935.594.30.024.293.711.026.895.90.516.191.550.034.355.1	% WTTS (%)VS (%)% WT18.641.885.719.60.027.395.211.819.935.594.311.80.024.293.70.011.026.895.96.50.516.191.50.350.034.355.150.0	% WTTS (%)VS (%)% WTTS (%)18.641.885.719.641.80.027.395.211.827.319.935.594.311.835.50.024.293.70.024.211.026.895.96.526.80.516.191.50.316.150.034.355.150.034.3	% WTTS (%)VS (%)% WTTS (%)VS (%)18.641.885.719.641.885.70.027.395.211.827.395.219.935.594.311.835.594.30.024.293.70.024.293.711.026.895.96.526.895.90.516.191.50.316.191.550.034.355.150.034.355.1	% WTTS (%)VS (%)% WTTS (%)VS (%)% WT18.641.885.719.641.885.732.80.027.395.211.827.395.25.119.935.594.311.835.594.35.10.024.293.70.024.293.73.911.026.895.96.526.895.92.80.516.191.50.316.191.50.150.034.355.150.034.355.150.0	% WTTS (%)VS (%)% WTTS (%)VS (%)% WTTS (%)18.641.885.719.641.885.732.841.80.027.395.211.827.395.25.127.319.935.594.311.835.594.35.135.50.024.293.70.024.293.73.924.211.026.895.96.526.895.92.826.80.516.191.50.316.191.50.116.150.034.355.150.034.355.150.034.3	% WTTS (%)VS (%)% WTTS (%)VS (%)% WTTS (%)VS (%)18.641.885.719.641.885.732.841.885.70.027.395.211.827.395.25.127.395.219.935.594.311.835.594.35.135.594.30.024.293.70.024.293.73.924.293.711.026.895.96.526.895.92.826.895.90.516.191.50.316.191.50.116.191.550.034.355.150.034.355.150.034.355.1	% WTTS (%)VS (%)% WTTS (%)VS (%)% WTTS (%)VS (%)% WT18.641.885.719.641.885.732.841.885.719.70.027.395.211.827.395.25.127.395.211.019.935.594.311.835.594.35.135.594.311.00.024.293.70.024.293.73.924.293.78.411.026.895.96.526.895.92.826.895.90.00.516.191.50.316.191.50.116.191.50.050.034.355.150.034.355.150.034.355.150.0	% WTTS (%)VS (%)% WTTS (%)VS (%)% WTTS (%)VS (%)% WTTS (%)18.641.885.719.641.885.732.841.885.719.741.80.027.395.211.827.395.25.127.395.211.027.319.935.594.311.835.594.35.135.594.311.035.50.024.293.70.024.293.73.924.293.78.424.211.026.895.96.526.895.92.826.895.90.026.80.516.191.50.316.191.50.116.191.50.016.150.034.355.150.034.355.150.034.355.150.034.3

UNIVERSITY OF WISCONSIN

OSHKOSH Results from Pilot Testing

UNIVERSITY OF WISCONSIN

OSHKOSH Results Continued

Analysis	Unit	Recipe #1	Recipe #2	Recipe #3	Recipe #4
Total Normalized Biogas Volume	NL	129.4	80.8	107.1	128.4
Theoretical Biogas Yield	L	146.9	136.8	118.9	133.8
Percent Recovery	%	88	59	90	96
Organic Loading Rate	kg VS / m ³ day	3.3	3.3	3.3	3.3
Biogas Production from Fresh Material	NI biogas/kg (FM)	71.8	44.9	59.5	71.3
Biogas Production from Dry Matter	NI biogas/kg (TS)	205.1	130.0	166.0	207.8
Biogas Production from Organic Dry Matter	NI biogas/kg (VS)	279.9	177.5	230.7	272.4
Mean Methane (CH ₄)	%	56.5	56.0	54.4	56.4
Mean Carbon Dioxide (CO ₂)	%	43.5	44.0	45.6	43.6
Mean Hydrogen Sulfide (H ₂ S)	ppm	22.3	22.5	9.8	17.9
Final Methane Reading (CH ₄)	%	63.2	59.6	57.8	60.3
VS Reduction	%	56.6	52.1	45.9	48.1

OSHKOSH Results Continued

Sample Description	Sample ID	рН	TS %	VS %	Total VFA (mg/Kg WWB)
Final Digestate (Recipe #1)	B5515	8.8	28.0	50.3	21
Final Digestate (Recipe #2)	B5516	8.8	28.2	48.6	14
Final Digestate (Recipe #3)	B5517	8.8	26.5	56.9	15
Final Digestate (Recipe #4)	B5518	8.8	29.2	52.2	16

UNIVERSITY OF WISCONSIN OSHKOSH

Full Digestate Analysis and the ABC Testing Program

Parameter	Result	Units
Alkalinity as CaCO3 on solids	14000	mg/kg WWB
Chloride	3110	mg/L
C:N Ratio	15:1	unitless
Nitrogen, Total on solids	7117	mg/kg WWB
Nitrogen, Total Kjeldahl as N on solids	7106	mg/kg WWB
Nitrogen, Nitrate + Nitrite on solids	10.70	mg/kg WWB
Nitrogen, Ammonia (NH₃) as N on solids	1268	mg/kg WWB
рН	8.9	at 26.1°C
Phosphorus, Total on solids	2309.2	mg/kg WWB
Solids, Total	32.8	%
Solids, Total Volatile	63.4	% DM
Organic Carbon, Total (TOC) on solids	103716	mg/kg WWB
Volatile Fatty Acids (Total)	1999	mg/kg
Acetic Acid	506	mg/kg
Propanoic Acid	194	mg/kg
Butanoic Acid	653	mg/kg
Isobutanoic Acid	134	mg/kg
Valeric Acid	343	mg/kg
Isovaleric Acid	169	mg/kg
Arsenic (As) on solids	1.36	mg/kg
Boron (B) on solids	12.0	mg/kg DWB
Calcium (Ca) on solids	24865.70	mg/kg DWB
Cadmium (Cd) on solids	0.81	mg/kg
Chromium (Cr) on solids	5.14	mg/kg
Copper (Cu) on solids	30.9	mg/kg
Iron (Fe) on solids	308.10	mg/kg DWB
Potassium (K) on solids	13465.30	mg/kg DWB
Lead (Pb) on solids	7.42	mg/kg
Mercury (Hg) on solids	0.021	mg/kg
Magnesium (Mg) on solids	8198.10	mg/kg DWB
Manganese (Mn) on solids	1.10	mg/kg DWB
Molybdenum (Mo) on solids	0.78	mg/kg
Sodium (Na) on solids	455.70	mg/kg DWB
Nickel (Ni) on solids	3.84	mg/kg
Sulfur (S) on solids	857.0	mg/kg DWB
Selenium (Se) on solids	ND	mg/kg
Zinc (Z) on solids	55	mg/kg
Soluble Salts (electrical conductivity EC ₅)	2.2	dS/m (mmhos/cm)
E. coli on solids (quantification)	<50	MPN/g
Salmonella (1-2 Test)	Negative	Presence/Absence

Result

Units

Parameter

Summary

- Lab analysis can:
 - Help you run your digester more effectively
 - Understand baseline operation of your system
 - Evaluate changes and new feedstocks
 - Evaluate end product value
- Understand BMP testing and how to use the data
- Find a lab that works for you

Questions?