H2S Removal for Biogas Project

H2S Removal from Biogas for RNG and Electricity Projects

April 2019
Presented by Daniel Waino, P.E.
H2S Safety Issues

320–530 ppm leads to pulmonary edema with the possibility of death. 530–1000 ppm causes strong stimulation of the central nervous system and rapid breathing, leading to loss of breathing. 800 ppm is the lethal concentration for 50% of humans for 5 minutes' exposure (LC50). (Wikipedia)

Hydrogen Sulfide Levels in Biogas 0 – 10,000 ppmv
H2S \rightarrow \text{Sox when combusted. This combines with water to form Hydrogen Sulfide. This is a strong acid associated with Acid Rain.}

SOX is air pollution and affects the health of plants, animals and the environment.
H2S is removed for engine projects and Boilers for the following reasons:

- Sox Emission Limits (air permits)
- Equipment protection from Acid Gas (corrosion)
RNG and H2S

H2S is removed from RNG gas to comply with pipeline tariffs (0.25 grains/100CF = 4 ppmv)

Typically other Sulfur compounds are limited to 1 grain/100CF

H2S is also removed to protect equipment from corrosion
Oxygen Effects

Electricity and Boilers:
• Some Oxygen in the gas is OK

RNG Projects:
• All Oxygen Must be kept out of the pipeline
A Range of Options

- Liquid Scavenger
- Dry Media (Sulfatreat, Sulfatrap, Iron Sponge)
- Impregnated Carbon
- H2S Specific Carbon
- Iron Added directly to Digester
- Oxygen added to Digester
- Caustic Scrubber
- Biological Scrubber
- Regenerable Biological Removal
- Iron Chelate
Selection Criteria

• Capex Costs
• Opex Costs
• Removal Efficiency
• Effect on Oxygen Levels
• Reliability
• Labor to change out material
• Wastewater Treatment options
• Uptime
Liquid Scavenger

Advantages
- Low Capex

Disadvantages
- High Opex
- Find a place to send spent chemical
Iron Sponge

- Dry Media
- Iron impregnated woodchips
- Works best with a little Oxygen
- Low Capex
- Higher Opex
- Media changeouts (downtime)
- Saturated Gas Required
- Changeouts can be hazardous
Iron Sponge Changeouts

One site’s changeout strategy:

• Used Iron Sponge react exothermically with Oxygen

Take vessel off line

Flood vessel with water

Bubble Air through vessel for a day

Change out vessels with new media
Sulfatreat/Sulfatrap

- Iron impregnated clay
- Works best with a little Oxygen
- Lower Capex
- Higher Opex
- Media Changeouts (downtime)
- Saturated gas
Sulfatrap System
Sulfatreat/Sulfatrap Maintenance

Vessels are difficult to changeout, because of bridging of sulfur between the media pieces.

Bridged media can suddenly fall to the bottom of the vessels (dangerous).

This is a difficult job taking one or two days and a number of operators.

Heavy equipment is often required to changeout vessels and break up media.
Carbon

• Carbon Impregnated with Caustic
 • Reacts with H2S in the gas

 Carbon designed for H2S removal
 - Requires semi- saturated gas and high velocities

 Both are lower Capex and Higher Opex
 Downtime from Changeouts
Carbon Maintenance

Vessel changeouts are much easier than for Sulfatreat. The media pours out easily from the vessels.

Carbon media tends to remove other compounds, and disposal may be a problem as the media has reacted with other compounds in the gas.
Caustic Scrubber

- Lower Capex
- Higher Opex (from Caustic Usage)
- Must have a place to dump used Caustic
- Caustic reacts with CO2 in the gas in addition to the H2S (high Caustic usage)
Caustic Scrubber Maintenance

Chemistry will need to be checked and maintained.

Waste water from the Caustic scrubber will need to be treated.
Biological Scrubber

- Similar to the Caustic scrubber, but bacteria convert some of the H2S to elemental sulfur. This frees Caustic to react with more H2S.
- Relies on Colonies of bacteria (need a backup)
- Medium Capex
- Medium Opex
- Need a place to dump used Caustic
- Oxygen is added to the process (bad for RNG)
Waste water from the scrubber will require treatment.

Operators are required to dose nutrients.

Media may need to be periodically cleaned due to biofouling.
Biological Scrubber
Caustic Scrubber w/ Biological Regeneration
Caustic Scrubber w/ Biological Regeneration

Advantages:
• Low Opex

Disadvantages:
• Needs a backup H2S removal system due periodically unstable bacteria colonies
• Requires Nutrients from system supplier
• Creates Hydrophilic Elemental Sulfur that is difficult to filter
• Higher Capex
Caustic Scrubber with Biological Regeneration Maintenance

Still need to changeout replace backup media

Check chemistry and dosing requirements

Must dispose of sulfur slurry and wastewater from process

Periodically clean system from biofouling
Iron Chelate
H2S Removal

Inlet separator → Sparger Tower → Outlet Separator → Regenerator → Settling Tank → Treated LFG → Sulfur Cake
Iron Chelate

Treatment:
- $\text{H}_2\text{S} + \text{Fe}^{+3}\text{L} \rightarrow 2\text{H}^+ + \text{S}^0 + \text{Fe}^{+2}\text{L}$

Regeneration:
- $\frac{1}{2}\text{O}_2 + 2\text{H}^+ + 2\text{Fe}^{+2}\text{L} \rightarrow \text{H}_2\text{O} + 2\text{Fe}^{+3}\text{L}$

Chelates:
- Keep the Iron in solution

Others:
- Caustic, Surfactants, degradation inhibitors
Iron Chelate Spargers
Regenerator and Settling tank
Iron Chelate Pipe Bridge
Iron Chelate Heater Skid
Iron Chelate Pumps
Iron Chelate Chemical Injection
Chelated Iron Treatment

- Sulfur Filter and Sulfur Cake
Iron Chelate Summary

Advantages
- Low Cost of Operation
- No disposal (except sulfur cake)
- Continuous process

Disadvantages
- High Capital Costs
- Process operates warm

Performance
- Inlet: 1000 ppmv H2S
- Outlet: <4 ppmv H2S
Iron Chelate maintenance

Annually need to clean piping and vessels from sulfur settling
H2S Summary

H2S treatment selection will depend on:

- Inlet Flow rates
- Concentration of H2S in the gas
- Use of the Gas (RNG/Engines/Etc)