WÄRTSILÄ RENEWABLE GAS/ PUREGAS SOLUTIONS

BIOGAS UPGRADING/ CAPURE TECHNOLOGY

November 19th, 2020

American Biogas Council Biogas Upgrading Case Studies Webinar

Today's Speakers

Joe Ayala General Manager

Wärtsilä Puregas North America

George Yavari Senior Project Manager

Wärtsilä Puregas North America

Fredrik Vigertsson Service Manager

Wärtsilä Puregas North America

Patrick Serfass (Moderator) Executive Director

American Biogas Council

- You should be able to hear me talking now. If you can't, use the questions module to describe your issue.

- Two Audio Options: Phone or Computer Choose one and connect

 Pro tip: Don't call in on our phone if your audio is set to "Mic and Speakers"

- Ask questions using the Questions Panel on the right side of your screen at any time.

- The recording of the webinar and the slides will be available after the event. We will post them online and send you a link.

Who we are

The <u>only</u> US organization representing the <u>entire biogas</u> <u>industry</u>

All sectors represented

- Project developers/owners
- Equipment retailers and dealers
- Waste management companies
- Waste water companies
- Farms
- Utilities
- Municipalities
- Consultants and EPCs
- Financiers, accountants, lawyers and engineers
- Non-profits, universities and government agencies

200+ organizations 2,000+ individuals

The US Biogas Market

Biogas Process

12/11/2020

99.9% of the CH₄ in the biogas can be sold
Always the highest revenue

CApure Technology
No affinity for CH₄ / high affinity for CO₂

Best In Class

 No other single technology achieves this efficiency

Biogas upgrading without heat integration

Biogas upgrading with heat integration

- < 0.06 kWh/Nm³ Biogas in electricity consumption
 - CApure process operates at low pressure (only the CH₄ is compressed)
- < 0.1 kWh/Nm³ Biogas in net heat consumption
 - 95% of the heat used can be recovered
- Low consumption of water and solvents
 - Long life, biodegradable organic solvents used in CApure process are part of a closed-loop system
- Low maintenance cost
 - Robust design, Easy access, 98% uptime guaranteed

99.9% CH ₄	

Recovered by Wartsila Puregas Solutions unique upgrading process.

Core model	Max Capacity (scfm)
CA30LP	567
CA50LP	800
CA60LP	1521
CA70LP	2276
CA80LP	3780

5 core models - available in 2 versions

- Standard version
- Low pressure version (LP)

Manufactured and fully tested before delivered to site

High-Grade Stainless Steel used throughout

Built-in redundancy of key components such as compressors and blowers

Easy access for maintenance

US manufactured in Dubuque, Iowa

CAPURE MANUFACTURING FOOTPRINT

Kalmar, Sweden HQ & Main Workshop

and a ser

WA, USA OK, USA

12/11/2020

- Packages include remote operation, supervision, control, service, maintenance & 24/7 phone support
- Installation, Start-Up, Commissioning and Operator Training included as standard
- Extended warranty packages available
- Remote monitoring and call out available
- 98% uptime guarantee further improved through optimisation program

- Over 40 operational sites
- Sites in USA, Sweden, UK, Denmark, Germany, Norway, Ireland, Switzerland
- Two new installations in US in 2019/2020
- Range of substrates including food waste, agricultural residues, green crops, WWTP

1.3. REFERENCES PLANTS

- 1. Borås, SWE, 2002, 450 Nm³/h, co-digestion **) FW, MSW
- 2. Göteborg, SWE, 2006, 1600 Nm³/h, WWTP *)
- 3. Kalmar, SWE, 2008, 200 Nm³/h, co-digestion **) FW
- 4. Falkenberg, SWE, 2009, 750 Nm³ h, co-digestion *) FW
- 5. Stockholm, SWE, 2009, 800 Nm³/h, co-digestion **) FW
- 6. Stavanger, NOR, 2009, 500 Nm³ /h, co-digestion *) FW
- 7. Könnern, DEU, 2009, 3400 Nm³/h, green crops *)
- 8. Oslo, NOR, 2010, 750 Nm³/h, WWTP **)
- 9. Karlstad, SWE, 2010, 200 Nm³/, WWTP **)
- 10.Linköping, SWE, 2010, 3400 Nm³/h, co-digestion **) FW, MSW
- 10. Sävsjö, SWE, 2012, 600 Nm³/h, manure co-digestion **) FW
- 11. Freiburg, DEU, 2012, 1000 Nm³/h, green crops *
- 12.Växjö, SWE, 2012, 500 Nm³/h, WWTP **) FW, MSW
- 13. Weissenborn, DEU 2013, 700 Nm³/h, green crops *)
- 14. Zürich, CHE, 2013, 1400 Nm3/h, WWTP *) MSW
- 15. Karlskoga, SWE, 2014, 900 Nm3/h **) FW, MSW
- 16. Crouchland, GBR, 2014, 2000 Nm3/h *)
- 17. Kalmar, SWE, 2014, 600 Nm3/h **) FW, MSW
- 18. Hemmet, DNK, 2015, 900 Nm3/h *)
- 19. Glenmore, IRL, 2016, 1800 Nm3/h
- 20. Lindum, NOR, 2015, 600 Nm3/h **) FW
 - 19 © Wärtsilä

11/12/2020

- 21. Buchan, GBR, 2015, 1250 Nm3/h *)
- 22. Riverside, GBR, 2015, 2.000 Nm3/h *)
- 23. Biokraft, NOR, 2017, 2200 Nm3/h with liquefaction **) FW
- 24. Rybjerg, DNK, Membrane plant, 2016,
- 25. Grøn Gas Vraa, DNK, 2016, 3000 Nm³/h
- 26. Sønderjysk, DNK, 2016, 5000 Nm³/h
- 27. Somerset, GBR, 2016, 1250 Nm³/h
- 28. Willand, GBR, 2016, 1250 Nm³/h
- 29. Granville, GBR, 2016, 3000 Nm³/h
- 30. Ekogas, SWE, 2017, 700 Nm³/h
- 31. Korskro, DNK, 2018, 5000 Nm³/h
- 32. Högbytorp, SWE, 2018, 2000 Nm³/h
- 33. Holsted, DNK, 2019, 3000 Nm³/h
- 34. Tekniska verken Linköping, LBG, SWE, 2019,
- 35. Bånlev, DNK, 2019, 3000 Nm³/h
- 36. GreenLab Skive Biogas, DNK, 2019, 5000 Nm³/h
- 37. VEAS, NOR, 2020, 2000 Nm³/h
- 38. Thorsö, DNK, 2020, 2000 Nm³/h
- 39. Three Mile Canyon Farms, USA, 2019, 6000 Nm³/h
- 40. Sønderjysk, DNK, 2020, 6000 Nm³/h
- 41. Junction City Expansion, USA 2020, 6000 Nm³/h

*) Grid injection to natural gas grid,

**) Vehicle fuel filling station or local bio methane grid Food waste FW, Municipal solid waste MSW

The amine advantage

George Yavari

12/11/2020

WHY AMINE?

- Amine has been used since the 1960s by the oil and gas industry for processing and sweetening of natural gas.
- More recently small-scale versions have been developed for the removal of CO₂ from biogas and CO₂ removal (carbon capture) from flu gas.
- Amine is the most energy efficient media for CO2 removal providing the highest CH4 recovery, the highest CH4 purity and the lowest OPEX
- The use of Amine reduces the methane slip to less than 0.1% which is more than a 500% reduction compared to other technologies
- Methane is a harmful GHG approx 28 times more harmful than CO2. Thereby biogas upgrading by Amine emits much less GHG than other upgrading technologies

Gas Sweetening Plant

IS AMINE DANGEROUS OR POLLUTING?

- Dimethylamine is a BIODEGRADABLE organic solvent with the formula (CH₃)₂NH
- A Puregas CA50 will be filled with only 1.8 m³ of amine and 1.8 m³ of water
- The solution is in a CLOSED-LOOP SYSTEM and the amine is recycled back into the process. None is consumed in the upgrading process.
- In biogas upgrading plants, handling of the amine needs to follow the same precautions as other liquids such as compressor oils, glycol, condensate etc i.e. wear protective gloves/protective clothing/eye protection etc. Avoid breathing dust/fume/gas/mist/vapours/spray.

WARTS

PUREGAS CA Upgrading Plant

How does amine process compare with other upgrading technologies?

Parameters	Amine process	Membrane	Water scrubbers	PSA
Technology -process steps		Pre-treatment needed: VOCs and siloxanes are removed before the membranes		Pre-treatment needed: H2S & VOC removal + Gas cooler/Chiller
Performance values (electricity consumption)	0,06 kWh/Nm3	0,28 kWh/Nm3 (3-stage)	0,25 kWh/Nm3 (have not met the performance tests on 0,21)	0,3 kWh/Nm3
Operational conditions	Higher temperature than others = The hot streams allow heat integration & heating of substrates.	Low temperatures (excess heat cannot be utilised without a heat pump)	Microbiological growth in the water – capacity decrease & cleaning (fatty substrates) Low Temp (see previous)	Swinging is managed with buffertanks (continuous process) Low Temp (see previous)
Methane slip	<0.1% of inlet CH4	<2,5% of inlet CH4	<5% of inlet CH4	<4% of inlet CH4
Product quality (remaining CO2)	<1 vol% CO2 in product	~1 vol% CO2 in product (3-stage), 1-stage has higher CO2 in produce	~2 vol% CO2 in product	~2 vol% CO2 in product
Health, environment, safety (HSE): Raw gas impurities are removed in each technology but by different means and the sidestreams need to be treated differently	Solvent: amine Leakages to environment are minimised with process safety Amine traces go out only with off- gas (<150 micrograms/Nm3 CO2)	A dry system Gas cooler with chiller as pretreatment collecting the impurities (water, VOC, impurities) & AC (VOC, H2S)	Water treatment – impurities end up in water streams	Gas-cooler will knock-out water and VOC Traces of VOC in the offgas
Utilities & efficiency (cooling water consumption) – heat integration reduces the total low energy consumption for the upgrading)	Efficient heat integration possible and with heat integration no cooling water needed Less water consumption	No water consumption but high electrical consumption	Water consumption and high electrical consumption	No water consumption but high electrical consumption
CAPEX & foot print (large plants, >500 Nm3/h)	Amine CAPEX attractive, less footprint	Higher footprint and CAPEX	Same footprint as amine	Higher footprint
CAPEX & foot print (small plants, < 500 Nm3/h)	Higher footprint and CAPEX	Lower footprint and CAPEX	1000-2500 Nm3/h mid range	1000-2500 Nm3/h mid range

Electricity Consumption Comparison

24

Comparison of typical Biogas upgrading plant using Membrane and Chemical absorption technology

Electricity Yearly Consumption

Basis: 3500 scfm of inlet raw biogas flow Using membrane system increase the electricity cost by 1,260,000 dollars /year.

Chemical Absorption	0.06	kwh/Nm3
Membrane	0.28	kwh/Nm3
Difference	0.22	kwh/Nm3
Yearly Electricity usage difference	12,578,834	kw/year
Electricity cost	0.10	dollar / kwh
Total Energy Cost Difference	1,257,883.40	dollars / year

Methane Recovery and Revenue Comparison

Basis: 3500 scfm of inlet raw biogas

	Methane Recovery	Product biomethane in scfm	Product gas Caloric value btu/ft3	Production Million btu / year
CApure amine process	99.90%	2028	1000	1,065,901
Membrane System	97.0%	1969	1000	1,034,959
5."	0.000/	50		20.040
Difference	2.90%	59		33,942
Biomethane price		\$35 per million btu		
		+ p		
More Revenue in a Year By utilizing Wartsila Puregas CApure amine process technology			\$ 1,082,972.52	

Integration of heat recovered from biogas upgrader into the digestion process

Operation & Automation

Fredrik Vigertsson

12/11/2020

CAPURE PROCESS OVERVIEW

Uptime and Reliability

- Facility is going through a Factory Acceptance Test before being shipped to site
- Well tested PLC program with a long history
- All analog signals are trended
- Easy to use HMI panel with user friendly interface
- 24/7 helpdesk with online support with a skilled Wärtsilä engineer receiving the calls

🖾 🐂 💥 🎜 🦧 🛋 🕛 🛔				172.30.110.111
10/20/2020 12:36:47 PM Puregas	750 9/21/2020 11:13:33 AM PFA60:01 Frequency invetter alarm. Bio 750 9/7/2020:6:19:43 PM VO module or node communication en	ogas blower 1 Cr	Manual capacity limit: 50.0 %	Production Sequence: Running Capacity: Kanalasi Min Max
Overview		Plant settings		
Biogas		r lant oottingo		Ť
CO2 Absorption Biomethane	Auto Recirculation	Activates recirculativ QCH66.06 LL, low methane QH066.05 HH, high dew po	on concentration biomethane delivery int biomethane delivery an sulfide concentration	Special features
compressors	Start	QCO66.05 HH high carbon o	dioxide concentration biomethane delivery	
Gas dryers	Stopp	PT66.11 High delivery press	sure avel	Trends
Biomethane		PT60.01 L, low incoming bio	ogas pressure	Trip alarms
CApure system	Activate capacity limit	Hysteresis Limit Automatic capacity II	imit concentration biomethane delivery	Start/Stop
system	Deactivate capacity limit	0.0 약 10.0 약 QHO66.05 H, high dew poin 0 ppm 2000 ppm QHS62.02 H, high hydrogen	nt biomethane delivery n sulfide concentration	Reports
Ventilation	Capacity reduction 50,0 % Maximum allowed gasholder level in activated capacity reduction	0.0 % 0.8 % QCO66.05 H high carbon di	oxide concentration biomethane delivery n sulfide concentration	Gas
Straight line PFA60	Manual capacity 45.0 %	5.0 psi 200,0 psi PT66.11 High delivery press	sure	analysis
Straight line PCO64	Capacity increase / sec 0.0500 % /s			Show/Hide Hand valves
Straight line FIC82.03 OCH62.02	Production start 10.0 %			Show/Hide metric values
LIC83.02	Production stop .5.0 % Gas holder level limit for production stop			Information
	Start delay production 250 s			Network
	Automatic start plant delivery pressure Start delivery pressure PT66.11, leave recirculation			Energy
	Automatic stop plant delivery pressure 62.0 psi Stop delivery pressure PT66.11, recirculation			UVELVIEW
				Logout

Logo v

Case Studies

Fredrik Vigertsson

12/11/2020

Ø WÄRTSILÄ

More Biogas – Kalmar, Sweden

- 750 Nm³/h raw biogas (65% methane)
- 99.95% methane efficiency
- 30,000 tons pa of food waste, manure and crop residues
- Heat supplied from biomass boiler
- Two high pressure compressors, each compress the biomethane to 250 Barg
- Four trailer filling stations
- Local CNG fueling

Karlskoga Biogas – Sweden

- 900 Nm³/h raw biogas (65% methane)
- Food and agricultural waste
- 10% landfill gas with 45% methane added
- Two high pressure compressors, each compress the biomethane to 250 Barg
- 10 trailer filling stations
- Local CNG fueling

Riverside Biogas – Glenfiddich Distillery

- 2000 Nm³/h biogas from spent malt.
- 99.9% methane efficiency
- Heat supplied from CHP
- Back up biogas boiler.
- Injects 1,200 Nm³/h biomethane direct to the gas grid
- Propane enrichment and gas network entry facility.

Buchan Biogas – Peterhead (SGN)

- 1200 Nm³/h biogas from agricultural waste
- 99.9% methane efficiency
- Heat supplied from biogas boiler
- Injects 720 Nm³/h biomethane direct to the gas grid
- Propane enrichment and gas network entry facility.

Biogas Zurich, Switzerland

- Wastewater treatment facility
- 1400 Nm³/h biogas from sewage sludge
- Heat supplied from biogas boiler
- Injects 840Nm³/h biomethane direct to the gas grid
- Propane enrichment and gas network entry facility.

Sønderjysk Biogas, Denmark

- 5,000 Nm³/h biogas from agricultural waste
- 540,000 tons of manure, straw and agricultural residues
- Injects c. 2,000 Nm³/h biomethane to the gas grid
- Produces enough energy to heat 15,000 homes or fuel 570 city busses.

Castle Eaton Farm, UK

- 750 Nm³/h biogas from agricultural waste
- 99.9% methane efficiency
- Chopped straw & agricultural residues
- Virtual Pipeline
- Biomethane injected to the gas grid at high pressure.
- Multiple sites feed into the same injection point.

Three Mile Canyon Farms, Oregon USA

- 6,000 Nm³/h biogas from dairy waste
- 99.9% methane efficiency
- Feedstock: Cow manure
- Pipeline injection for California market
- Biomethane injected to the gas grid at 900 psig
- Plant operating uptime over 99%
- Largest manure-to-RNG operations in the United States

Junction City Expansion Project, Oregon USA

- 6,000 Nm³/h biogas from agricultural and dairy waste
- 99.9% methane efficiency
- Feedstock: Hay, straw and cow manure
- Injecting on Northwest Natural Pipeline gas for California market
- Biomethane injected to the gas grid at 400 psig.
- Plant to be commissioned this year

Questions?

