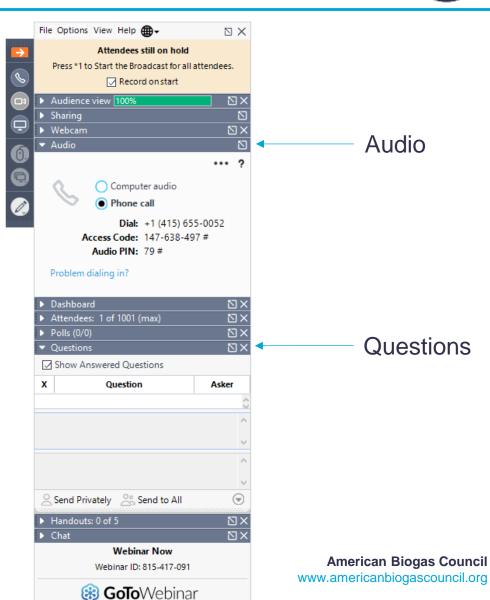
Shared Success: Customer Collaborations in Biogas, RNG & Carbon Capture

A conversation with Vaisala's Antti Heikkila and Justin Walsh

Quick Notes


You should be able to hear me talking now. If you can't, use the questions module to describe your issue.

Two Audio Options: Phone or Computer Choose one and connect

Pro tip: Don't call in on our phone if your audio is set to "Mic and Speakers"

Ask questions using the Questions Panel on the right side of your screen at any time.

The recording of the webinar and the slides will be available after the event. We will post them online and send you a link.

Case study applications:

- Co-Generation
- RNG Upgrading
- Carbon Capture

We are Vaisala

- We serve customers in Weather and Industrial markets
- 85+ years of experience providing a comprehensive range of innovative observation and measurement products and services
- Trusted supplier of instrumentation to protect sensitive processes and explore the unknown
- Various measurement solutions developed for industrial processes and controlled environments ensure, product quality, energy efficiency, and personal safety

Presenters

Antti Heikkila

- Product Manager / Instrumentation Expert
- 5 years with Vaisala

Justin Walsh

- BusinessDevelopment /Application Engineer
- 10 years with Vaisala

MGP260 Series

Product Family of Multi-Gas Probes for Biogas, Renewable Natural Gas (RNG), and Carbon Capture (CCU/S) Applications

VAISALA

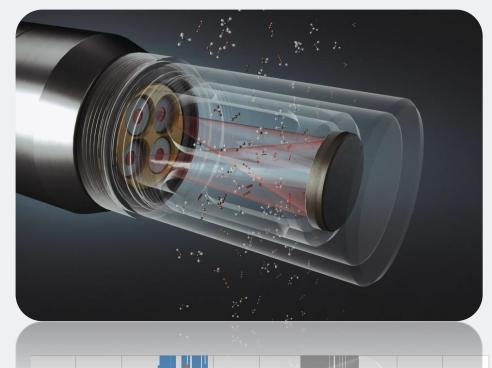
MGP260 Product Family

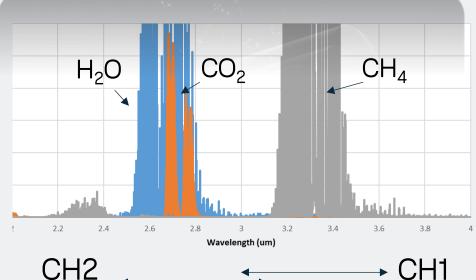
MGP261 - CH₄, CO₂, H₂O

- Measured gases include
 - 0...100 vol-% Methane
 - 0...100 vol-% Carbon Dioxide
 - 0...25 vol-% Water Vapor

Property	Methane CH ₄	Carbon dioxide CO ₂	Water vapor H ₂ O	
Accuracy specification at 25 °C (+77 °F) and 1013 mbar including non- linearity, calibration uncertainty, and repeatability; temperature and pressure compensated				
Accuracy at +25 °C (+77 °F) and 1013 mbar ¹⁾	±1 vol-%	• 0 30 vol-%: ±2 vol-% • 30 50 vol-%: ±1 vol-% • 50 100 vol-%: ±2 vol-%	0 25 vol-%: ±0.5 vol-%	
Repeatability	±0.5 vol-% at 60 vol-%	±0.3 vol-% at 40 vol-%	±0.1 vol-% at 10 vol-%	

MGP262 - CH4, CO2


- Measured gases include
 - 0...5 vol-% Methane
 - 0...100 vol-% Carbon Dioxide


Property	Methane CH ₄	Carbon dioxide CO ₂		
Accuracy specification at 25 °C (+77 °F) and 1013 mbar including non- linearity, calibration uncertainty, and repeatability; temperature and pressure compensated ¹⁾				
Accuracy at +25 °C (+77 °F) and 1013 mbar	0 2 vol-%: ±0.1 vol-%CH₄ 2 5 vol-%: ±5% of reading	90 100 vol-%: ±1 vol- % 0 90 vol-%: ±2 vol- %		
Repeatability	< ±0.1 vol-% at 1% CH ₄	±0.4 vol-% at 95 vol-%		

Multigas measurements with CARBOCAP®

- Multi-gas capability, with optical measurement channels combined into a single probe
- Measurement stability is achieved with proprietary reference measurements
- Sensor head is heated to prevent condensation
- Active components are protected from flammable gases (CH₄) and corrosive gases (H₂S)
- Cross-interference is avoided by measuring humidity in combination

MGP260 Series Applications

Biogas & Landfill Gas

- Anaerobic Digester or Landfill gas measurement
- Pre / Post treatment
- H2S resistant

Combined Heat & Power Engines

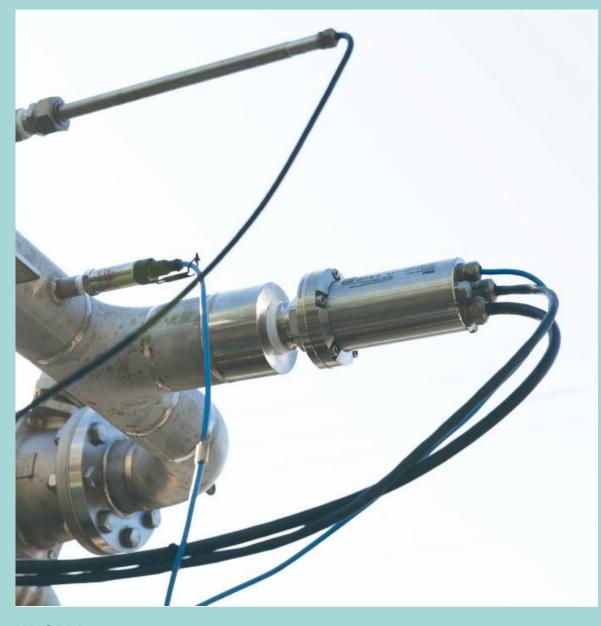
- Fast methane concentration monitoring
- Real-time in-situ humidity measurement

Renewable Natural Gas (RNG) Upgrading

- Continuous measurement
- Highly accurate offgas monitoring
- Dew point output reduces risk

Carbon Capture

Full-range (0-100%)
 and continuous CO2
 measurement in
 exhaust and off-take
 piping



Combined Heat & Power

JFE Environment Technology Co.

Miura Biomass Center in Japan

VAISALA

Miura Biomass Center Biogas Plant

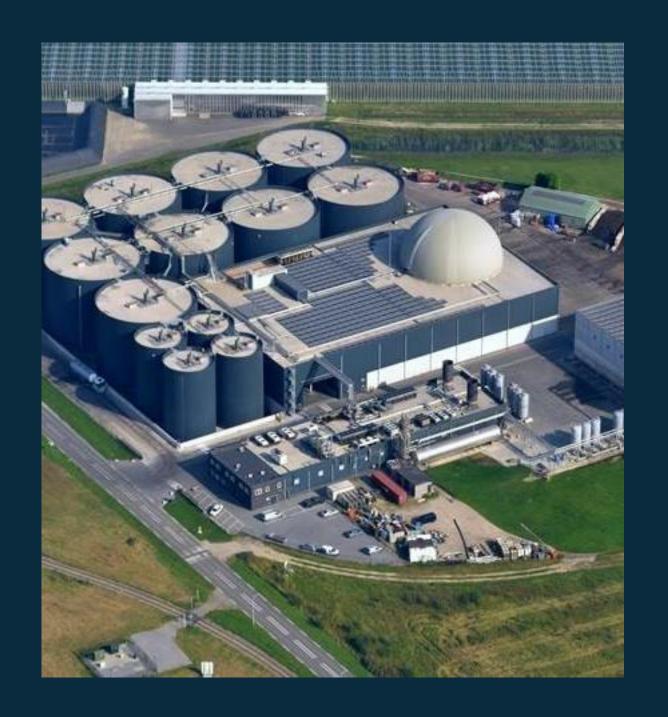
Kanagawa prefecture, Japan

Challenge

 Optimize the efficiency of the combined heat and power engine with seasonally varying biogas composition

Solution

 Monitor for CH₄, CO₂ and H₂O in the gas stream to tune engine performance and ensure safe humidity levels


Results

 Increased overall operational efficiency and minimized seasonal instabilities

Biogas/ RNG Upgrading

Pentair

The SFP Zeeland plant in the Netherlands

Pentair – Haffmans Sustainable Fuels Plant (SFP) Netherlands

Challenge

• Enhance the quality of RNG produced and minimize the methane slip.

Solution

 Monitoring directly in the high-humidity inlet as well as in off-gas stream

Results

System performance was able to be optimized and verified

Portable Test Unit

Bohr Limited **AD**vantage

A compact and portable analysis tool for Biogas systems as a service or product.

Bohr Limited ADvantage

United Kingdom

Challenge

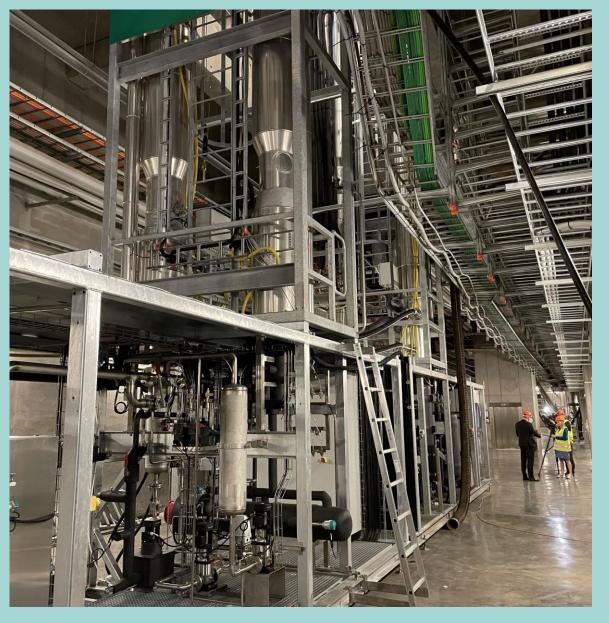
 Bring versatility to biogas system evaluation with minimal investment

Solution

Expand the opportunity for continuous process monitoring to more plants

Results

 A wider range of opperators can evaluate the benefits of measurement and make informed investment decisions


Carbon Capture

CopenHill Center

Amager-Bakke waste incinerator in Denmark

Partnership with the Technical University of Denmark (DTU)

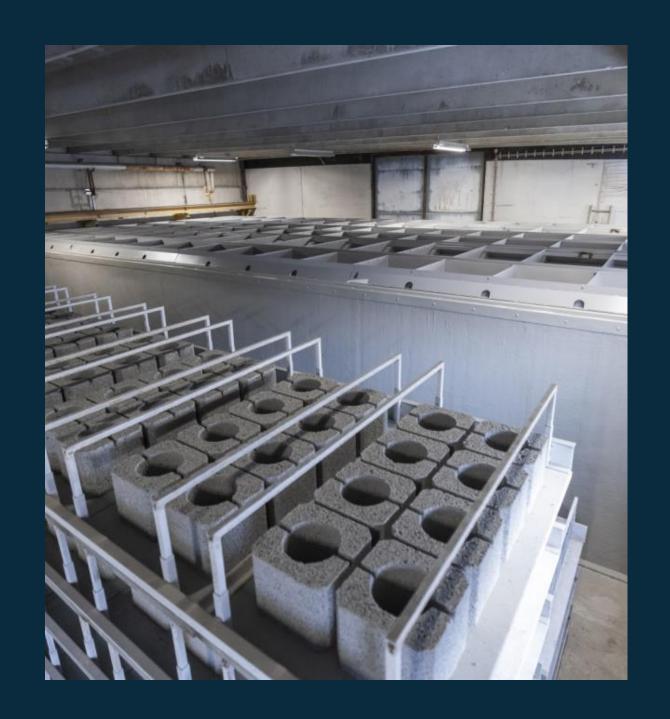
Amager Bakke Waste to Energy CHP Copenhagen, Denmark

Challenge

• Prove the economic viability of the point source capture method used at the plant

Solution

• Directly measure the CO₂ concentrations at multiple points to best account for the carbon in the system


Results

 Process optimization demonstrated by accurate measurements during testing of different configurations

Carbon Capture Utilization

Carbonaide

Carbon-negative pre-cast concrete curing

Carbonaide Production pilot-plant Hollola, Finland

Challenge

 Optimize the process for captured CO₂ to be absorbed during concrete curing

Solution

 "Our unique advantage is that we accurately measure and control the carbon-curing process." – COO Jonne Hirvonen

Results

 Carbonaide's process has become commercially viable and energy-efficient

What's in it for You?

INCREASE CONTROL WITH METHANE MEASUREMENT

REDUCE RISK WITH HUMIDITY MEASUREMENT

ENSURE PEAK PRODUCTION WITH OFFGAS MEASUREMENT

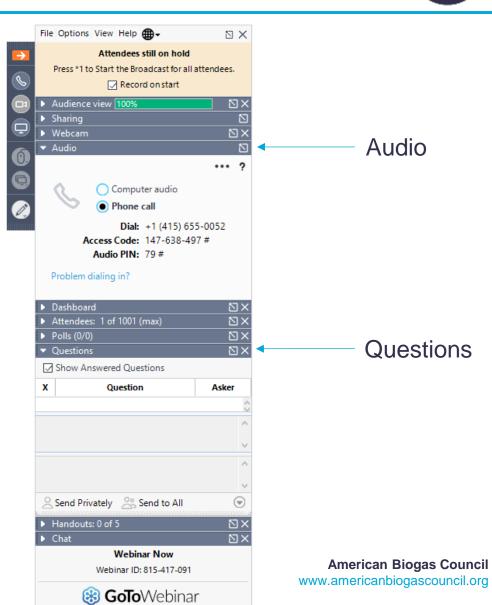
- Three-in-one: methane, carbon dioxide and humidity measurement in wet biogas
- CARBOCAP® autocalibration

World's 1st Optical Biogas Moisture Measurement

- Corrosion resistant measurement up to condensing conditions
- Hydrogen Sulfide H₂S resistant

In Situ Installation

- Real-time and Ex certified
- No sampling lines, pumps or moisture removal needed
- No calibration gases needed in routine use


VAISALA

Type in your questions under "Questions" in the toolbar.

Make sure to answer the survey at the close of this webinar.

Thank you!

