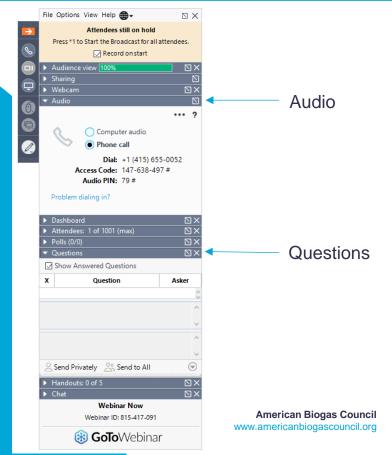


W O R L D W I D E L E A D E R Environmental & Process Monitoring

Sorbent Tubes for the Measurement of Metals in Gaseous Fuels


You should be able to hear me talking now. If you can't, use the questions module to describe your issue.

Two Audio Options: Phone or Computer Choose one and connect

Pro tip: Don't call in on our phone if your audio is set to "Mic and Speakers"

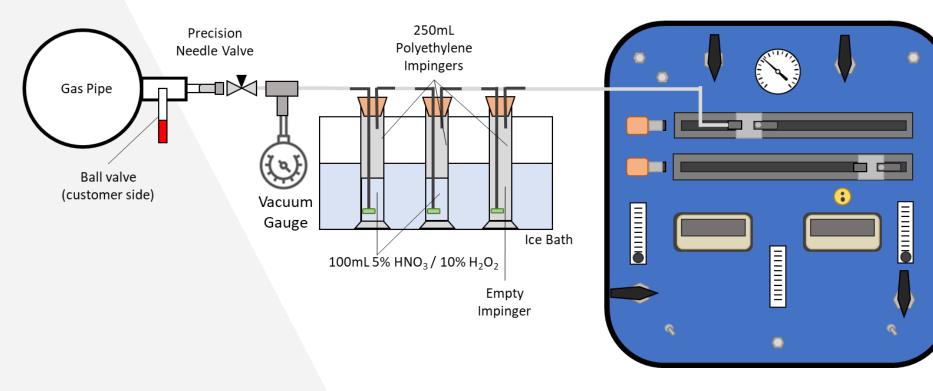
Ask questions using the Questions Panel on the right side of your screen at any time.

The recording of the webinar and the slides will be available after the event. We will post them online and send you a link.

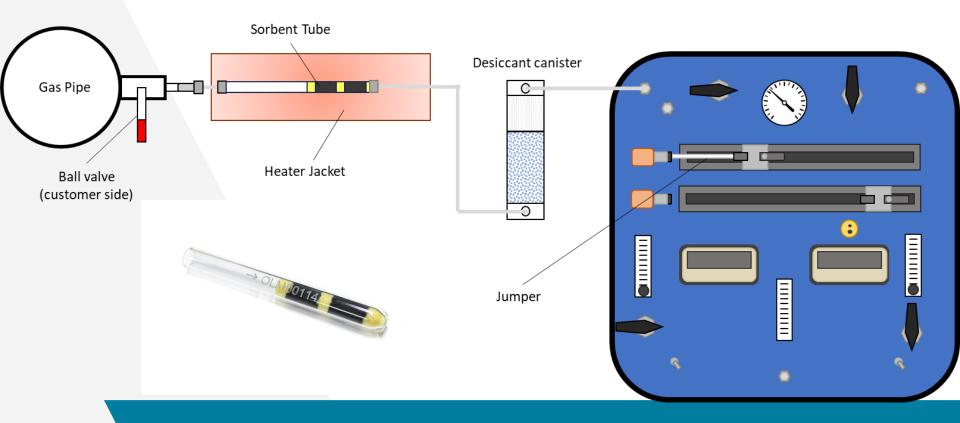
Context

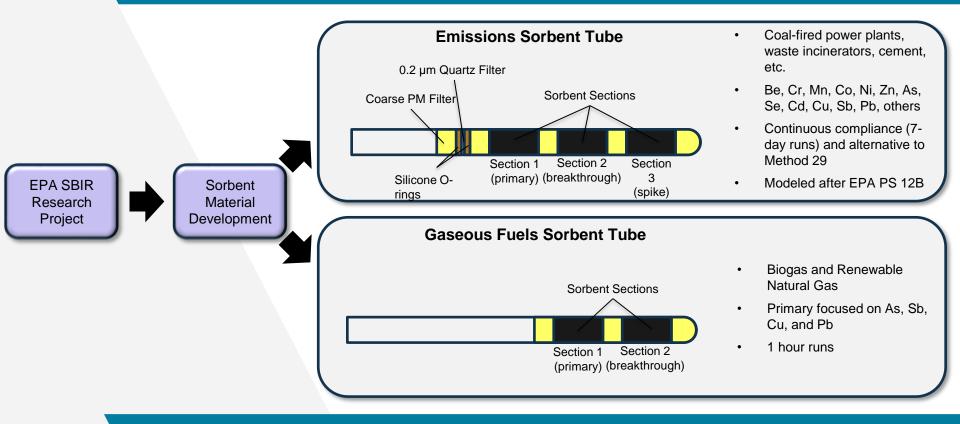
Why are we measuring metals in the first place?

- Utility tariffs and gas quality specifications
- Carcinogenic and non-carcinogenic Health Protective Constituents (these metals are toxic)
- Renewable Natural Gas (RNG) producers must demonstrate compliance
 - Currently includes Copper (Cu), Arsenic (As), Antimony (Sb), and Lead (Pb)

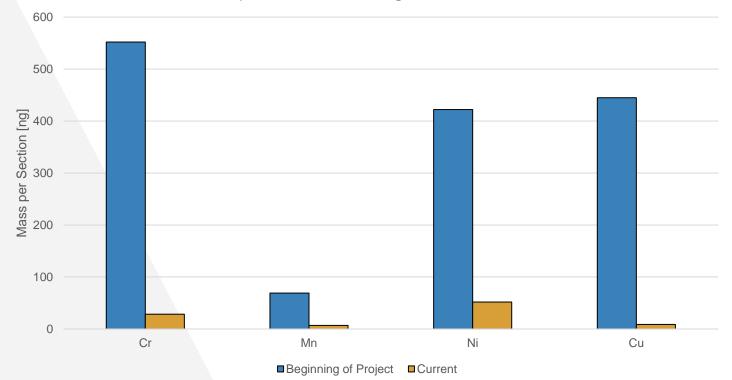

What is the purpose of this method development?

Replace EPA Method 29 with sorbent tubes

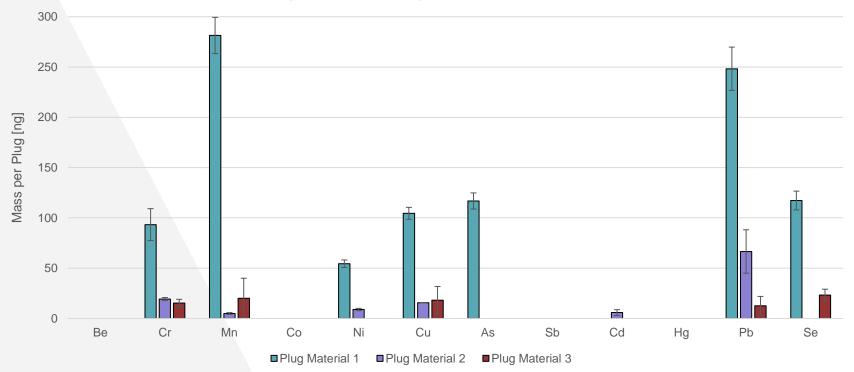

EPA Method 29


Modified Method 29

Sorbent Tubes


Background

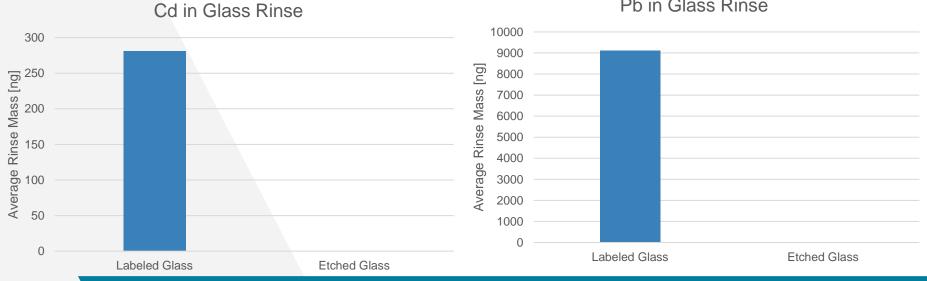
Objective #1 – Reduce Background Metals


Background – Sorbent Material

Improvement in Background Metals

Background – Plug Material

Plug Material Background Comparison



Background – Glass Tubes

	Average Rinse Mass [ng]						
	Cd	Pb					
Labeled Glass	280.8	9115.0					
Etched Glass	0	0					

Objective #2 – Optimize Capture Efficiency

Hydride Generation Experiment

Hydride Generation Experiment

		Measured Mass (ng)								
	Sample ID	Metal Hydride								
		As	Sb	Hg	Se					
TY	PICAL BACKGROUND									
Blank	OLM0005 - S1	1.6	2.4	0.0	2.6					
ыапк	OLM0005 - S2	2.5	3.2	0.0	0.8					
	OLM0004 - S1	10968.9	17778.7	1755.2	5042.5					
Run 1	OLM0004 - S2	1874.8	124.7	268.6	0.0					
	Breakthrough	17.1%	0.7%	15.3%	0.0%					
	OLM0002 - S1	10165.8	15436.3	2388.5	4189.7					
Run 2	OLM0002 - S2	1802.0	64.4	272.3	0.1					
	Breakthrough	17.7%	0.4%	11.4%	0.0%					
	OLM0003 - S1	8063.2	16396.8	2566.4	3511.4					
Run 3	OLM0003 - S2	1745.2	113.4	155.0	0.0					
	Breakthrough	21.6%	0.7%	6.0%	0.0%					
	OLM0001 - S1 (Arsenic only)	13445.7								
Run 4	OLM0001 - S2 (Arsenic only)	2446.4								
	Breakthrough	18.2%								
	AVERAGE BREAKTHROUGH:	18.7%	0.6%	10.9%	0.0%					

Field Validation Test 1 – No treatment

Comula ID	Gas Volume [L]	Concentration [ng/L]				Total [ng/L]				Breakthrough [%]			
Sample ID		Cu	As	Sb	Pb	Cu	As	Sb	Pb	Cu	As	Sb	Pb
OLM0018-S1	18.83	4.6	161.8	147.3	1.0	7.0	274.2	176.2	2.8	58.6%	69.5%	19.6%	187.4%
OLM0018-S2	18.85	2.7	112.5	28.9	1.8	7.3	274.3						107.4%
OL720094-S1	40.00	1.9	50.1	75.0	69.1		138.1 16	467.2	78.3	312.7%	175.5%	123.2%	13.3%
OL720094-S2	49.00	6.0	88.0	92.4	9.2	8.0		167.3					
OL720089-S1	22.60	2.0	108.2	138.0	34.9	- 4		277.3	104.5	260.9%	167.8%	100.9%	429.5%
OL720089-S2	22.60	5.1	181.5	139.2	149.7	7.1	289.7	277.3	184.5				

Field Validation Test 2 – Treatment Method 1

Comple ID	Gas Volume [L]	Concentration [ng/L]				Total [ng/L]				Breakthrough [%]				
Sample ID		Cu	As	Sb	Pb	Cu	As	Sb	Pb	Cu	As	Sb	Pb	
OLM00174-S1	33.73	1.3	630.1	511.8	ND	2.6	630.9	512.3	ND	102.8%	0.1%	0.1%	ND	
OLM00174-S2	55.75	1.3	0.8	0.5	ND	2.6				102.8%			ND	
OLM00179-S1	37.88	1.1	575.2	486.9	1.1	2.9	576.7	487.3	1.1	171.2%	0.2%	0.1%	0.0%	
OLM00179-S2	37.88	1.9	1.4	0.5	ND			407.5					0.0%	
OLM00181-S1	40.08	1.2	246.5	199.3	ND	2.5	560.0	480.1	ND	112 40/	127.2%	140.9%		
OLM00181-S2	40.08	1.3	313.5	280.8	ND	2.5	560.0			113.4%			ND	
OLM00172-S1	20.50	1.3	513.7	463.1	0.3	2.4		462.6	0.2	04 70/	0.4%	0.1%	0.0%	
OLM00172-S2	- 38.59	1.1	1.8	0.5	ND	2.4	515.6	463.6	0.3	84.7%			0.0%	
Blank		1.5	ND	ND	ND									

Field Validation Test 3

Semale ID		Concentra	tion [ng/L]	Total [ng/L]		Breakth	rough [%]	Nichos		
Sample ID	Gas Volume [L]	As	Sb	As	Sb	As	Sb	Notes		
OLM00133-F		1.8	3.8							
OLM00133-S1	12.08	471.4	420.0	474.6	424.3	0.3%	0.1%	Flow rate = 0.2lpm		
OLM00133-S2		1.3	0.4							
OLM00107-F		2.1	5.1							
OLM00107-S1	11.56	485.2	419.9	488.7	425.0	0.3%	0%	Flow rate = 0.2lpm		
OLM00107-S2		1.3	ND							
OLM00106-F		0.8	2.7							
OLM00106-S1	35.78	467.7	410.3	470.1	413.3	0.3%	0.1%	Flow rate = 0.5lpm		
OLM00106-S2		1.5	0.3							
OLM00108-F		0.6	1.9							
OLM00108-S1	34.56	445.7	388.3	448.3	392.2	0.4%	0.5%	Flow rate = 0.5lpm		
OLM00108-S2		2.0	2.1							
OLM00130-F		0.2	2.2							
OLM00130-S1	58.31	421.3	419.2	450.5	421.6	6.9%	0.1%	Flow rate = 1.0lpm		
OLM00130-S2		29.0	0.2							
OLM00134-F		0.3	1.9							
OLM00134-S1	58.65	404.8	406.1	431.9	408.0	6.6%	0%	Flow rate = 1.0lpm		
OLM00134-S2		26.8	ND							
OLM00102-S1	28.63	400.9	398.2	402.4	398.2	0.4%	0%	No Filter. Flow rate = 0.5lpm		
OLM00102-S2	28.03	1.5	ND	402.4	398.2	0.4%	0%	No Filter. Flow rate = 0.5ipm		
OLM00103-S1	30.54	413.0	408.4	414.8	409.9	0.5%	0.4%	No Filtor, Flow rate - O Flom		
OLM00103-S2	50.54	1.9	1.4	414.0	409.9	0.5%	0.4%	No Filter. Flow rate = 0.5lpm		
				Avg. Relativ	e Deviation	Avg. Breakthrough				
				1.9%	1.4%	2.0%	0.2%			

Objective #3 – Compare with Method 29

Method 29 Comparison - Design

Sampling System 1 Train A – Sorbent Tube Train B – Method 29

Sampling System 2 Train A – Sorbent Tube Train B – Method 29

- Analyze all M29 breakthrough impingers
- Minimize M29 dilution
- Sample each quad for same duration
- Pair sorbent traps directly against M29 on each console (eliminate possibility of systematic bias between consoles)

Gas

Pipe

Method 29 Comparison - Data

	Trap Total [ng/L]		Trap BT [%]		Trap RD [%]		M29 Total [ng/L]		M29 BT [%]		M29 RD [%]		RPD%	
Sampling Interval	As	Sb	As	Sb	As	Sb	As	Sb	As	Sb	As	Sb	As	Sb
09/10/2024 11:39-12:39	385.0	359.6	1.5%	3.8%	C 10/	2.00	316.5	335.8	70.8%	59.7%	4 10/	2.00/	19.5%	6.9%
09/10/2024 11:39-12:39	434.8	386.8	1.1%	1.5%	6.1%	3.6%	291.8	316.4	60.3%	47.4%	4.1%	3.0%	39.4%	20.0%
09/10/2024 13:40-14:40	369.0	349.9	1.8%	1.6%	11 40/	10.40/	314.5	320.3	60.7%	47.1%	1.20/	1 50/	15.9%	8.8%
09/10/2024 13:40-14:40	463.7	431.3	1.7%	2.4%	11.4%	10.4%	306.4	330.2	55.9%	49.1%	1.3%	1.5%	40.9%	26.5%
09/10/2024 15:37-16:37	398.0	361.7	2.5%	1.7%	2.9%	3.7%	337.7	331.0	72.2%	61.4%	4 10/	2 50/	16.4%	8.8%
09/10/2024 15:37-16:37	421.5	389.1	1.6%	2.1%	2.9%	3.1%	311.4	315.0	59.3%	40.3%	4.1%	2.5%	30.1%	21.1%
09/10/2024 17:31-18:31	394.8	372.2	1.4%	4.8%	1.0%	1 70/	319.5	326.5	51.6%	42.4%	F 10/	3.4%	21.1%	13.1%
09/10/2024 17:31-18:31	402.4	384.8	3.3%	2.9%	1.0%	1.7%	354.1	349.7	63.7%	61.3%	5.1%	5.4%	12.8%	9.6%
09/10/2024 19:26-20:26	413.3	372.8	2.9%	4.0%	2.7%	2.6%	313.2	309.5	73.2%	61.3%	2.00/	1 70/	27.6%	18.6%
09/10/2024 19:26-20:26	436.4	392.4	3.0%	1.3%	2.7%	2.6%	332.5	320.4	46.1%	57.0%	3.0%	1.7%	27.0%	20.2%
09/10/2024 21:18-22:18	427.5	387.5	5.2%	0.7%	0.9%	2.9%	304.3	298.8	67.5%	52.5%	5.6%	3.4%	33.7%	25.8%
09/10/2024 21:18-22:18	420.1	365.8	4.4%	3.2%	0.9%	2.9%	340.4	320.1	66.6%	63.3%	5.0%	5.4%	21.0%	13.3%
AVERAGE	413.9	379.5	2.5%	2.5%	4.1%	4.1%	320.2	322.8	62.3%	53.6%	3.9%	2.6%	25.4%	16.1%
Extrapolation Assuming Breakthrough through Impinger 2														
	Impinger 1 Avg: 197.3 210.2				210.2									
					Imping	er 2 Avg:	122.9	130.9						

Impinger 1 Avg:	197.3	210.2
Impinger 2 Avg:	122.9	130.9
Lost to Atmosphere:	76.6	81.6
Total Conc:	396.8	422.7
RPD%	2.1%	5.4%

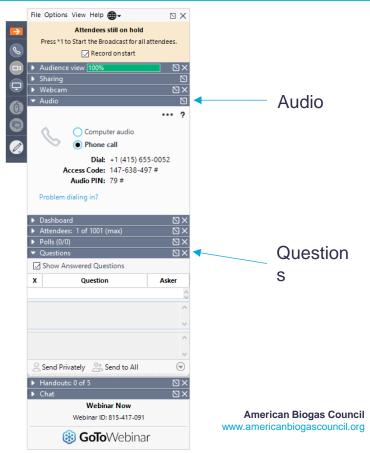
Method Status

Available for Use Now

ASTM Standard

- WK91049 has been drafted and is currently going through balloting/revision process
- Includes sampling and analysis criteria
 - Analysis is done by ICP-MS following microwave assisted digestion
- Includes criteria for developing an alternative to Ohio Lumex sorbent material
- Expect publication some time in 2025

Jonathan Cross Director of Technical Services Ohio Lumex


jonathan.cross@ohiolumex.com 440-264-2500 x325

Type in your questions under "Questions" in the toolbar.

Make sure to answer the survey at the close of this webinar.

Thank you!

